Blood pressure modulation by central venous pressure and respiration. Buffering effects of the heart rate reflexes.

نویسندگان

  • J K Triedman
  • J P Saul
چکیده

BACKGROUND Despite constant fluctuations in cardiac preload caused by the effects of respiration and changes in posture on venous return to the heart, arterial blood pressure remains remarkably constant. The effects of instantaneous lung volume (ILV) and variations of central venous pressure (CVP) on blood pressure (BP) were studied by use of frequency domain techniques to quantify the contribution of heart rate (HR) reflexes to attenuation of the effects of changes in right ventricular preload on arterial pressure. METHODS AND RESULTS Random independent variation of ILV, then CVP (obtained using lower-body negative pressure), was performed in eight humans in the supine position. HR, ILV, CVP, and systolic (SBP) and diastolic (DBP) BPs were recorded during control periods and after complete blockade obtained by use of 0.04 mg/kg atropine and 0.2 mg/kg propranolol. A frequency-domain analysis was performed on pairwise relations by the cross-spectral technique. During autonomic blockade, fluctuations in CVP were induced up to 0.14 Hz but caused corresponding changes in arterial pressure only up to 0.08 Hz (P < .02), indicating a mechanical damping effect of the heart and pulmonary vasculature. Fluctuations of BP were also delayed from CVP by 1.55 to 2.10 seconds. At frequencies < 0.1 Hz, relations of CVP to all indices of BP increased with blockade (CVP-SBP, 0.9 +/- 0.5 versus 2.7 +/- 0.8 mm Hg/mm Hg, P < .01; CVP-DBP, 1.3 +/- 0.4 versus 4.3 +/- 1.4 mm Hg/mm Hg, P < .01; CVP-pulse pressure [PP], 1.0 +/- 0.3 versus 1.9 +/- 0.8 mm Hg/mm Hg, P < .05). Higher-frequency fluctuations of arterial BP were a relatively pure manifestation of respiratory activity. At frequencies from 0.15 to 0.35 Hz, the relation of ILV to SBP was unchanged with blockade, whereas relations of ILV to DBP and PP decreased (ILV-DBP, 6.1 +/- 3.5 versus 3.3 +/- 2.2 mm Hg/L, P < .02; ILV-PP, 7.0 +/- 4.3 versus 2.7 +/- 2.2 mm Hg/L, P < .01). An associated change in phase of these relations suggested that neurally mediated changes in HR may offset mechanical effects caused by respiration. CONCLUSIONS Both slow changes of BP (< 0.08 Hz) induced by variations of CVP and more rapid changes induced by ILV are actively buffered by heart rate reflexes. During blockade, the mechanical properties of interposed cardiopulmonary structures limit CVP-induced fluctuations of BP. These findings have implications for BP regulation in pathological conditions associated with impairment of HR control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buffering Effects of the Heart Rate Reflexes

Background Despite constant fluctuations in cardiac preload caused by the effects of respiration and changes in posture on venous return to the heart, arterial blood pressure remains remarkably constant. The effects of instantaneous lung volume (ILV) and variations of central venous pressure (CVP) on blood pressure (BP) were studied by use of frequency domain techniques to quantify the contribu...

متن کامل

Mild hypovolemic stress alters autonomic modulation of heart rate.

In response to changes in central venous volume, changes in vagal efferent cardiac outflow have been demonstrated in animals but not in humans. In this study, frequency domains analysis was used to quantify modulation of heart rate by respiration and blood pressure in normal human adults undergoing mild central hypovolemic stress induced by blood donation and postural change. In supine subjects...

متن کامل

Differential sympathetic nerve and heart rate spectral effects of nonhypotensive lower body negative pressure.

Lower body negative pressure (LBNP; -5 and -15 mmHg) was applied to 14 men (mean age 44 yr) to test the hypothesis that reductions in preload without effect on stroke volume or blood pressure increase selectively muscle sympathetic nerve activity (MSNA), but not the ratio of low- to high-frequency harmonic component of spectral power (P(L)/P(H)), a coarse-graining power spectral estimate of sym...

متن کامل

اثر تزریق مداوم (اینفیوژن) دوزپائین کتامین برتغییرات همودینامیک در جراحی پیوند عروق کرونر

Background & objectives: Cardiopulmonary bypass often causes a stress hormonal response with subsequent changes in hemodynamic and organ perfusion. Human studies involving cardiopulmonary bypass have shown that very low doses of ketamine can attenuate inflammatory and stress markers, without adverse effects. The aim of this study was to investigate whether low dose infusion of ketamine have hem...

متن کامل

Arterial Baroreflex Buffering

Static muscle contraction activates metabolically sensitive muscle afferents that reflexively increase sympathetic nerve activity and arterial pressure. To determine if this contractioninduced reflex is modulated by the sinoaortic baroreflex, we performed microelectrode recordings of sympathetic nerve activity to resting leg muscle during static handgrip in humans while attempting to clamp the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 1994